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1. INTRODUCTION

The atmospheric environment is a decisive influence on many electro-

optical systems. In most cases, the atmospheric medium constitutes a limiting

factor for the propagation of electro-magnetic signals. In other cases, the

optical properties of this medium render systems infeasible. Thus to support

electro-optics system planners, designers and users with probability of occur-

rence information on earth surface propagation conditions, it is desirable to

have statistics of specific propagation parameters available.

The natural aerosol is a basic sonstituent of the atmosphere,

having considerable impact generally on optical propagation properties. Its

basic parameters are composition, concentration, and distribution.

Though considerable effort has been addressed in the past by many research

workers to measuring and understanding the characteristics of natural aerosols,

the state-of-the-art must be considered still as quite preliminary. In fact

there are neither comprehensive statistics available containing sufficient

Information for purposes mentioned above, nor unique models which can be used

for operational purposes free of ambiguities.

The reason lies in the complexity of aerosol composition, the vast mechan-

isms of its formation, its complex dynamics, and in its complex way of ageing.

One other problem in the past has been the state of data collecting devices

which did not easily permit measuring aerosol data over larger size intervals

with satisfactory resolution.

The situation is improving now with te advent of new aerosol particle

counters.

Typically, aerosol size distribution measurements generate a huge stream

of original data. These must be channeled down, for two reasons. First,

because of economics, all redundancy in the data should be removed to the

largest extent possible. Secondly, there is virtually no way to sensibly work

with, analyze, or use in later processing applications, this bulk of original

data.
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Generally, in a situation like this the benefit of a model consists in

providing some kind of mathematical expression through which the data could

be greatly compressed. However, there is no such single expression capable

of describing size distributions. Junge's formula is referred to very widely

in the literature. It is an empirical model in the sense that observation show

that it tends to be followed, but not that it must be followed. Yet, for the

applications mentioned above, Junge's formula does not seem to be adequate.

Other distribution functions are the standard and modified gamma distributions,

the normal and the lognormal distributions. Gamma, normal and lognormal distri-

butions have proven to be quite versatile. Generally, they are used for

typical background aerosols., Sums of normal and lognormal distributions are

used to fit distributions originating from a single source through a single

mechanism. These few examples were cited to show that very often the choice

of a specific mathematical expression seems to be justified only by the purpose

of use. A highly accurate method for fitting aerosol data available involves

the use of Spline Functions. However, this approach normally yields a large

number of coefficients which do not correspond to physically meaningful parame-

ters.

2. AEROSOL SIZE DISTRIBUTION MEASUREMENTS

2.1 Size Distribution Function

Assume an aerosol is contained in a unit probing volume. The basic

method for determining its size distribution function is to count the total

number, N(D), of aerosol particles (per unit volume) whose diameter values

fall below a certain value, D. The function N(D) is a cumulative function

with values between zero and N, the total number of aerosol particles con-

tained within the unit volume. Generally, the number of aerosol particles

in a given volume is very large, and their sizes may be assunted to vary con-

tinuously. Thus, N(D) approaches a continuous, smooth function as N increases.

It is then possible to derive the size distribution function, n(D), by

n (D) - dN(D)dD (2.1)
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or in integral representation,

D

N(D) - n(D )dD (2.2)

In practice the determination of N(D) leads to serious problems since it

is, for experimental reasons, possible only to measure particles with sizes

above a certain, device-dependent, lower limit, say DL . Thus N(D) is deter-

mined up to a constant N(D L). Since n(D) is a derivative function, this

ambiguity is removed.

The aerosol counters employed in this work provide data on the number of

particles (per unit volume) for some specified diameter intervals

D, C D < D,+1  with i - 1,2,..., M. If N, denotes the number of particles

for the i-th channel, then because of (2.2) one has

Di+l 
/

Ni -J n (D) d D . (2.3)
Di

Accordingly, Ni may be used directly to evaluate an estimate for the size

distribution function, n, at the point Di, that is

Ni

n (Di) n: - Di+ DI  ; I - 1,2,...M. (2.4)

3. DATA FIT OBJECTIVES

If data are going to be fitted by some algorithm, two basically different

cases are to be distinguished. In one case, the data result from a process,

the physical nature of which is understood in the sense that a physical model

or theory is available. In this case, data fitting permits the determination

of some free model parameters through adjusting the model predictions to the

set of measured data. In the other case, there is no physical model at hand
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to predict the experimental findings and data fits in this case are primarily

another way of data presentation. If the fit algorithm is chosen carefully

and appropriately adapted to the problem, a few, important objectives may be

met simultaneously:

A. Data representation:

The insertion of a smooth curve into the plot of data points is

a useful way to assist the understanding of the general trends

underlying the data set by inspection.

B. Error smoothing:

The smooth fit curve is likely to smooth out high frequency con-

tributions within the set of data due to random error. This is

especially true if a least-squares-fit algorithm is applied.

C. Data reduction:

Through data fitting, one can generally reduce the large amount

of data to a few functional parameters only. From these, it is

possible to retrieve the original data (to the accuracy desired),

as well as to calculate new interpolated data.

D. Empirical modelling:

Generally, it is much easier to correlate any typical condition

of the process under study with a typical pattern of the re-

duced data set, than with the original samples.

The Least Squares Method

Measured data with values vi (i = 1,2,.. .M) are assumed to be function of

a single variable, t. The experimental result is a list of M data pairs

(ti, vi). The measuring points, ti , need not be spaced regularly. In the

least squares method, a function F from an appropriate collection YV is
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determined such that
M 2
E F (ti) - vt) min. (4.1)

i-l

For ease of computation, the function space F is assumed to be formed by all

linear combinations of some basis functions, f That is, any F e - can be

written as

K
F(t) E bk fk (t). (4.2)

k-0

The set of fk must be linearly independent. Though desirable in many cases,

the fk need not necessarily obey some orthogonality condition. In most appli-

cations, the function space 7 is deliberately restricted by requiring

K< M. (4.3)

The free amplitudes, bk, in (4.2) are determined through (4.1) as solutions

of the Gaussian normal equations

A9 B - C, (4.4)

where A is a positive definite, square symmetric matrix with elements

M
kl ' E f k (t i) fl1 (t )' (k, 1, 1 , . .K), (4.5)

i=l

and C is a column vector with elements

M

ck = E fk (t) vi' (k i, ... K). (4.6)

The vector B of elements bk is the solution.

The problem encountered in determining solutions of Eq. (4.4) is that the

matrix A usually tends to be ill-conditioned. As a result, numerical insta-
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bilities arise. The problem is reduced somewhat if an appropriate function

system, f is used for expansion. Furtheremore, it is advisable not to apply

the general Gaussian inversion technique to deduce the solution, B, rather than

make use of Cholesky's method, a numerically stable matrix decomposition tech-

nique which fully exploits the symmetry and positive definiteness of matrix A.

4.2 Data Transformation

Size distributions of natural aerosols tend to drop off in magnitude

over several decades within the diameter range from .1 to 30 m. Therefore,

the fit usually is applied not to the original data n. but rather to their
1

logarithms

v, = log ni , (i - 1, ... , M). (4.7)

It should be noted that this is, in fact,a substantial step in the data

anlaysis. Indeed, if the fitted curves are going to be employed in any opti-

cal propagation calculation, taking the logarithms is a necessary approach.

It has been shown that the results of such calculations depend to a very

large extent on the number of small aerosol particles as well as on that of

larger particles, although the latter usually are much less populated. For

the purpose of optical calculations, the "goodness" of fit should be uniform

over the entire spectrum of particle diameters considered regardless of their

magnitude in concentration. This is quite naturally achieved in using the

logarithmic scale since then the least-squares fit results in an overall

minimized relative error for the original data.

Typically for the aerosol counters employed in this type of work, the

widths of their different size channels generally increase with increasing

diameter values, DI.
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4.3 Chebyshev Polynomials

The success of the fitting procedure depends critically on the set of

basic functions, fk' to be used for expansion of the data points. In the

present work it is suggested that for fitting natural aerosol size distribu-

tions, the use of Chebyshev polynomials is highly favorable. In this case,

formula 4.2 is called a Chebyshev expansion and is of the form

F(t) - b °  b1 T1 + ... + bk Tk' (4.8)

This saves computing time considerably, and enables an easy check for

convergence. However, it is then more difficult to interpret the results of

the fit in a straight forward and general way.

Chebyshev polynomials are well known from many textbooks on approximation

theory and smoothing. There, one usually may also find an outline of their

special properties which makes them a rather unique set of basis functions for

use in numerical fit algorithms. The first few members of this set are given

by

T (t): = 1
0

T I(t): f t

T 2 (t): = -1 +2t 2

33
T3t) -3t +4t 3

T 4 =(t): 1 -8t2 + 8t
4

3 5
T5 (t): = 5t -20t +16t

The first polynomials T to T7 are shown graphically in Figure 2 for the" O 7

interval -1 4 t < 1. From this figure, it may be seen that

T k(t) I I 1 4 1 (419



The definitions (4.9) indicate that the polynomials Tk are built up from

either even or odd power functions in t. The amplitudes of the power functions

obviously tend to be vary large in magnitude, and it is because of their alter-

nate signs that the Tk stay within the limits (4.10). The numerical evaluation

of series like this may generally be subject to serious computational errors

for computers having limited word lengths. A convenient way out of this prob-

lem is to use the three-terms recurrence relation

Tk+ 2 (t) = 2 t . Tk+l (t) - Tk(t) , k=O,l,2 .... (4.11)

in conjunction with the basic definition (4.9) for T and TI .
o

Some Examples

Though the examples chosen are rather simple, they are of general interest

in the study of aerosols. They are:

- The Junge size distribution

- A unimodal lognormal size distribution

- The haze L model

The Junge size distribution is of the form

n (D): dN C D- (13+1) (.2
dNn (D) : = d---C-- C (4.12)

where the prime is to indicate that, since n is a function of diameter

rather than of radius, the concentration C differs in value from those to

be found in conventional tabulations.

On a log-log scale, n(D) plots as a straight line. In this case, the

Chebyshev fit results in a linear function

1
F(t) = Z bk T k (t)

k-0

- bo + b t. (4.13)

00
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The interpretation of the two amplitudes, b and bl, is most conveniently

done in the double logarithmic plot. It may be seen that b mainly determines
0

the absolute concentration, while b1 measures the slope.
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Junge distribution and Chebyshev approximations

/
The Junge parameters, C and B can be expressed uniquely in terms of

the amplitudes, b and b1 .

C' (6 og (DH . DL) "

log C b - bI  Lo (D H D (4.14)log (DR D L)

2B+ 1 log (DH/ DL b

From this it is clear that the amplitudes bk are dependent on the low and

high ends, DL and D respectively, of the measured diameter interval. Thus,

when compairing Chebyshev amplitudes for measi:-ements taken with different

devices, the corresponding values for D and D 1 must be taken into considera-

tion.

In case of Junge distributions, we can avoid! this unpleasant device-

dependence. However, the prollem is much more involved for more general

distributions containing many more terms. We hope to resolve this problem

in future studies.

The next example is that of a unimodal lognormal distribution

2Nlo 
D

n(D) = exp I ,
D. log a %/2 TE 2 log C

Again, the prime indicates that in the current notation the parameter N

is different in value from that in the literature where n has been considered

to be a function of the particle radius. The example illustrated is an

average size distribution found by Jaenicke et al. for maritime aerosols, and
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taken here at the experimental meshpoints of the present work. The median

number diameter accordingly is D m 0.52 11m ; the logarithmic standard devia-m

tion is 0 - 4.8.
8

One can see that the Chebyshev fit of a unimodel lognormal distribution

is excellent. Moreover, three coefficients are sufficient to specify this

fit, i.e. b 0 bI/ and b2 as one would expect since a lognormal distribution

is represented in the double logarithmic scale by a parabola of order 2.

/

The physical parameters N , Dm and bb can be expressed uniquely in terms

of the amplitudes b 0' b ' and b 2 .

The last example we consider is that of Deirmendjian's Haze L model

distribution

n (D) - a D exp (-b .D ) (4.15)

with the following parameter values

a 2.4878 10 - , 6 2

b =10.6905 r u Y I F_ 5

Unlike the two other examples in the log-log scale the distribution does

not represent a simple polynomial. Thus, the Chebyshev fit in this case is

really an approximation.

The few examples presented have been chosen to demonstrate the main

advantages and shortcomings of fit time algorithms. The fit was shown to be

versatile in the sense that various size distributions can be treated although

they are of quite different nature. All of them are basically related to the

aerosol field. Moreover, unlike in cases of orthogonal polynomials, the

fixed basis of Chebyshev polynomials for the function space permits a straight-
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forward, transparent interpretation of the fitted data in terms of a reduced

data set, namely the resulting Chebyshev amplitudes. A remaining difficulty

lies in the fact that the resulting amplitudes are dependent on the range of

particle diameters covered in the fit, and therefore to some extent are

device-dependent.
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